
autognomus ’ README

Germán Ruiz-Marcos

July 2021



0.1 Introduction

This is autognomus’ repository. autognomus (as in Automatic Tension-Oriented
Generator of Music) is our publicly available music generation system capa-
ble of generating tonal music that has long-term structure and matches input
tension profiles.

autognomus consists of four components or sub-systems, each of which tack-
les one of the following tasks:

• generating a main theme, consisting of a melody and an underlying har-
mony

• arranging the theme’s harmony

• developing new material, similar to the theme, so that boredom is avoided
and long-term structure is achieved

• morphing the theme and its developments, both their melody and har-
mony, so that they match changes in a given tension profile in real time

Notice that, in the tasks, the only one that concerns a real-time process is
the last one.

Figure 1 presents autognomus’ TAnDeM architecture (as in Themer, Arranger,
Developer and Morpher).

Figure 1: A diagram of autognomus’ TAnDeM architecture.

As seen in Figure 1, autognomus consists of four sub-systems. The first
sub-system, Themer, generates melodic and harmonic sequences which will be
interpreted as the main theme in a given narrative. The second sub-system,
Arranger, generates the appropriate arrangement of the voices in the harmony
of the newly generated theme. The third sub-system, Developer, generates de-
velopments of the newly generated theme. The fourth and final sub-system,
Morpher, transforms the generated theme so that it matches input tension pro-
files in real time.

In this repository, each sub-systems is implemented in a Jupyter Notebook.

1



0.2 How does autognomus work?

Let us imagine we want to use autognomus to automatically generate music for
a real-time interactive experience, such as, for instance, a video game. How
would we do this?

First, we would run Themer ’s Jupyter Notebook. This sub-system would
generate the main theme in our video game. To do so, we would have to feed
the Themer with a collection of input parameters. These include the number of
measures we want the theme to consist of, a tempo marking in beats per minute
(BPM), the time-signature and key-signature to be used in the theme, and the
character of the theme. Themer would generate a theme as a sequence of chord
labels and a melody against them. In Themer ’s interface, we can listen to the
generated materials. We can also re-run some steps of the generation, in case
we do not like what we are hearing. Once we are satisfied with the generated
theme, Themer will save it so that it can be used by the rest of the sub-systems.

Second, we would run Arranger ’s Jupyter Notebook. This sub-system would
organise the voicing of the chords in the generated theme. We would have to
feed the Arragner with Themer ’s outputs. Arranger would then generate the
corresponding arrangement of the chords in blocks and it will save it so that it
can be used by the rest of the sub-systems. In the current version of autognomus,
we cannot choose between different types of arrangements. This is something
we want to implement in the future.

Third, we would run Developer ’s Jupyter Notebook, but only if we want the
generated theme to be developed. We would have to feed the Developer with
Themer ’s outputs. Developer would then generate a collection of developments
(i.e. independent compositions) and it will save them so that they can be used
by the rest of the sub-systems. The developments are twice as long as the
input theme. That is to say, if the input theme lasts eight bars, each of the
generated six developments would last sixteen bars. In order for the generated
developments to be used in our video game, they would have to be arranged.
That is to say, we would have to run each development through the Arranger,
as described above in the second step.

Fourth, we would run Morpher ’s Jupyter Notebook. We would have to feed
the Morpher with Themer ’s, Arranger ’s and Developer ’s outputs. Morpher
would then loop the generated materials. It would play the generated theme
twice, followed by one of the developments, and this process would repeat ad
infinitum. In our video game, this is the music that would be played whenever
we are in a safe place. Let us imagine that, in our video game, there are monsters
who want to capture us. We could then quantify the degree of tension in the
game as inversely related to the distance to the monsters. That is to say, the
closer we get to a monster, the tenser, and vice versa. Morpher also considers
a tension threshold. This threshold can be interpreted here as the minimum
degree of tension for us to start to get worried about being captured by a
monster. That is to say, if the current degree of tension is below the threshold,
Morpher would interpret that we are in a safe place. And so it would continue
playing the looped theme and its developments. However, if the current degree

2



of tension is above the threshold, Morpher would transform the theme or the
development so that it matches the current degree of tension.

0.3 Where can you learn more about autogno-
mus?

autognomus’ implementation is partly based on our system AuToTen, which au-
tomatically calculates the degrees of tension in a piece of tonal music according
to Fred Lerdahl’s model of tonal tension. For more detail, see:

Ruiz-Marcos, Germán; Willis, Alistair and Laney, Robin (2020). Automatically
calculating tonal tension. In: The 2020 Joint Conference on AI Music Creativ-
ity (Sturm, Bob and Elmsley, Andy eds.), 19-23 Oct 2020, Royal Institute of
Technology (KTH), Stockholm, Sweden [On-line].
URL: http://oro.open.ac.uk/72732/

autognomus was developed as part of Germán Ruiz-Marcos’ PhD research
project. For more detail about what motivated autognomus, its implementation
and evaluation, see:

Ruiz-Marcos, Germán (2021). Tension-driven Automatic Music Generation.
PhD thesis The Open University.

3

http://oro.open.ac.uk/72732/

	Introduction
	How does autognomus work?
	Where can you learn more about autognomus?

