AuToTen

Introduction

This is a repository for AuToTen (as in Automatic Tonal Tension), a Python-
based system which automatically calculates the contributions to tonal tension
of a piece of music according to Lerdahl’s model of tonal tension.

Software specifications

AuToTen’s repository has been implemented using:

e Ubuntu 16.04.6 LTS

e Python 3.7.0 (also tested with IPython 6.5.0)
e music2l 5.7.2

e pandas 0.23.4

How to use AuToTen?

1.

2.

Download and decompress AuToTen-repository.zip at your desired lo-
cation.

Access that location and run the file run.py using a Python compiler of
your choice (e.g. Jupyter notebooks, IPython, etc).

. A dialog will pop up and will ask you to select a piece of music in MusicXML

format. For example, try selecting the piece example.zml which could be
found in the folder /example/.

Another two dialogs will ask you to select the piece’s prolongational re-
duction and metrical reduction, again in MusicXML format. These files
should incorporate the piece’s prolongational and metrical componennts
according to the Generative Theory of Tonal Music (GTTM). For example,
try selecting the files example-pr.zml and example-mr.xml, both in the
folder /example/. When using your own piece of music, you must calculate
these two files a priori. For this purpose, you can use the The Interactive
GTTM Analyser (IGA) (see gttm.jp). Please note IGA was not developed
by AuToTen’s authors, nor is hosted and maintained by them. If using
IGA, we recommend storing the piece of music in such a way its melody
is included in a single voice. This is because the current version of IGA
produces more accurate results in this way.

. A final dialog will ask you to pick the location where you want to store

AuToTen’s outputs. These outputs consist of two CSV files which include
quantitative values of the piece’s global tension and attraction according to
Lerdahl’s model of tonal tension. For example, see example-auto-tension.csv
and ezxample-auto-attraction.csv in /example/.

http://www.gttm.jp/

What else can be done with AuToTen?

Alternatively, you can also call AuToTen’s util functions independently. We
recommend first running setup.py (again, access AuToTen’s directory and use
your Python compiler). In this way, you will be able to directly call the following
functions:

1. distance, which calculates the distance between two chords in Lerdahl’s
Tonal Pitch Space (TPS).

o This function takes three inputs: a key, a reference chord and a chord
to which transition.

e Input the key in alphabet format, using upper case for major keys,
lower case for minor keys and the symbols # and b for sharp and flat,
respectively (e.g. C, a, Db, f#).

o Input the chords in Roman numeral format (i.e. degree/key), using
upper case for major degrees and major keys, lower case for minor
degrees and minor keys, the symbols #, b and n for sharp, flat and
natural respectively, the symbol 7 for diatonic sevenths and the
symbols + and - for augmented and diminished degress, respectively
(e.g. I/1, V7/i, vii-/IV, III4/1I).

e For example, try callying distance('C', 'I/I', 'I/bII'). It cor-
responds to the TPS distance between the tonic chord of C major
and the tonic chord of Db major. As output, you will get the tuple
(21, 5, 5, 11), which icludes the total distance between the two
chords and the values of TPS’ parameters, 4, j, k, respectively.

2. offset, which calculates the values of the offsets of the musical events
(i.e. notes and chords) included in the piece’s metrical reduction.

e This function takes one input: a piece’s metrical reduction in Mu-
sicXML format.

o For example, try callying offset('/.../example/example-mr.xml').
Note that you will have to include the specific path to the directory
where you store AuToTen in. As output, you will get a list of floats,
[0.0,0.75, ..., 22.0, 22.05], which represent the time of the
inception of the offsets in example-mr.xml.

e Nothe that, when using run.py, this list of offsets is stored in a
CSV file in your working directory. See, for example, ezample-auto-
offsets.csv in /example/.

3. generator, which calculates a representation, in the form of a matrix, of
the piece’s prolongational reduction.

o This function takes one input: a piece’s prolongational reduction in
MusicXML format.

o For example, try callying generator('/.../example/example-pr.xml').
Note that you will have to include the specific path to the directory

where you store AuToTen in. As output, you will get a list of
lists representing a matrix. This matrix represents the degrees of
embedding in the GTTM-based hierarchical classification (i.e. a tree)
provided by example-pr.xml.

e Nothe that, when using run.py, this matrix is stored in a CSV file in
your working directory. See, for example, example-auto-matriz.csv in

Jexample/.

4. parameters_finder, which calculates the parameters needed for the cal-
culation of global tension and attraction according to Lerdahl’s model of
tonal tension.

e This function takes two inputs: a piece in MusicXML format and a
CSV file containing its offsets (recall offset).

o For example, try callying parameters_finder(piece, offsets), be-
ing piece the file '/.../example/example.xml' and offset the
output given by offset('/.../example/example-mr.xml'). Note
that you will have to include the specific path to the directory where
you store AuToTen in. As output, you will get a table with the data
needed to use Lerdahl’s model of tension. For each offset, this table
includes an estimation of its key, chord label and chordal notes, as well
as the values of the paramerters in Lerdahl’s model of tonal tension
(i.e. inversion, non-harmonic and scale degree).

e Nothe that, when using run.py, this table is stored in a CSV file in
your working directory. See, for example, ezample-auto-piece-data.csv
in /example/.

5. t_calculator, which calculates the values of global tension of a given
piece of music according to Lerdahl’s model of tonal tension. See, for
example, ezample-auto-tension.csv in /example.

e This function takes two inputs: a piece’s parameters with regards to
Lerdahl’s model of tonal tension (recall parameters_finder) and a
piece’s matrix representation of its prolongational reduction (recall
generator).

o For example, try callying t_calculator(parameters, matrix), be-
ing parameters thefile '/.../example/example-auto-piece-data.xml'
and matrix the file '/.../example/example-auto-matrix.xml'.
Note that you will have to include the specific path to the directory
where you store AuToTen in. As output, you will get a list of integers,
[6,13, ..., 15,11, which represent the values of global tension of
the piece’s offsets according to Lerdahl’s model of tonal tension.

e Nothe that, when using run.py, this list is stored in a CSV file in
your working directory. See, for example, example-auto-tension.csv in
/example/.

6. a_calculator, which calculates the values of harmonic attraction of a
given piece of music according to Lerdahl’s model of tonal tension.

o This function takes one input: a list of attraction parameters with re-
gards to Lerdahl’s model of tonal tension (recall parameters_finder).

e For example, try -callying a_calculator(parameters[1]),
being parameters the output of the previously described
parameters_finder(piece, offsets). As output, you will
get a list of floats, [1.319,4.0, ..., 3.438,0.662], which
represent the values of attraction of the piece’s offsets according to
Lerdahl’s model of tonal tension.

e Nothe that, when using run.py, this list is stored in a CSV file in
your working directory. See, for example, example-auto-attraction.csv
in /example/.

How does AuToTen work?

The workflow of AuToTen is shown in the figure below. As input, AuToTen is
fed with a piece of music, in MusicXML format, and it outputs its values of
global tension and attraction. The unshaded boxes in the workflow represent
the algorithms embedded in AuToTen, whereas the shaded boxes represent the
corresponding inputs and outputs to these algorithms. There is also a box which
has been highlighted with a dotted line. It represents the GTTM-based analysis
that has to be performed using IGA.

IIIIIIIIIIIIIIIIIIIIIIIII GTTM || ma trix GTTM

{GTTM tree! tree [fcalculator matrix

ianalyser : metre TENSION
analyser b merre | |

] T,
Piece - glob
tension
Of- a,;ztyr:er calculator
music X ATTRACTION

arameter surface
i ke p >
harmonic Y _Plcaiculator[”|parameters @
analyser
chords

Figure 1: AuToTen’s workflow

AuToTen’s implementation

To calculate the values of tension and attraction of a given piece of music,
according to Lerdahl’s model of tonal tension, AuToTen takes the following
steps:

Step 1

Identify the most probable patterns of strong and weak beats, and how might these
be grouped, as well as the piece’s most probable hierarchical relations according
to GTTM rules.

Recall this step could be performed by IGA’s GTTM tree analyser. As input, it
needs a piece of music, in MusicXML format. As output, it produces the piece’s
hierarchical structure (GTTM tree in the above figure) and its metrical structure
(metre in the above figure), both in MusicXML format.

Step 2

Define the musical events that will be assigned with a tension value, according to
the analysis performed in the previous step.

Step 2 is performed by the metre analyser. As input, it is fed with metre,
calculated in Step 1. As output, it produces a list of the piece’s offsets. These
are interpreted by AuToTen as the list of the piece’s beats which will be assigned
with a value of tension and attraction.

In AuToTen, the metre analyser corresponds to offset from functions.metre.
The input file, metre, provided by IGA, is stored as a MusicXML ElementTree.
In this tree, the offsets are labelled as metric dots. offset simply finds these
metric dots and stores their offset values in a flat list.

Step 3

Represent the hierarchical relations in such a way that will facilitate the calcula-
tion of tension. Note this representation, in the case of manual calculations, is
given in the form of a tree.

Step 3 is performed by the matriz calculator. As input, it is fed with the GTTM
tree, calculated in Step 1. As output, it produces a GTTM matriz. This matrix
is AuToTen’s representation of the hierarchical relations embedded in a GTTM
tree.

In AuToTen, the matriz calculator corresponds to generator from
functions.prolongation. The input file, GTTM tree, provided by IGA, is
stored as a MusicXML ElementTree. Be a GTTM tree with n events, generator
will calculate its representation as a nxn GTTM matriz. A given event in the
piece, z, will be represented in the GTTM matriz by the zth row, which will only
contain a non-empty value, that coinciding with column y, where y corresponds
to the branch to which z is attached in the GTTM tree. An example is shown in
the figure below. Note that the highest dominating event is number 5, as there
are no branches above it. This will be denoted by a 0 at the (5,5) element in the
GTTM matriz. The events that connect to 5 in the tree, these are events 1 and
4, are represented by a value of 1 in the GTTM matriz (i.e. there is only one
branch above them) (see elements (1,5) and (4,5)). And so on. Notice that the
rest of the elements in the GTTM matrixz are kept empty.

Step 4

1 2 3 4 5
1 1
/i\ : ’
3| 2
1 2 3 a 5 4 1
5 0

Figure 2: GTTM matrix calculation example

Perform a harmonic analysis of the defined musical events and label them ac-
cordingly (Roman Numeral analysis is the notation used all along Lerdahl’s
work).

Step 4 is performed by the harmonic analyser. As input, it is fed with the piece
of music, in MusicXML format. As output, it calculates the most suitable key
and chord labels of the piece’s musical events.

In AuToTen, the harmonic analyser corresponds to chords_parameters
from functions.variables.chords_components, which uses the toolkit
music21. Given a piece of music, chords_parameters estimates the
piece’s key using music21‘s analyze('key'). Likewise, it estimates the
most suitable key for each measure using analyze in every measure (i.e.
getElementsByClass('Measure')). In this way, different versions of the
chords’ labels can be calculated. On one hand, music21‘s chordify is used to
estimate the chords’ labels using the whole piece’s estimated key. On the other
hand, chordify is used to estimate different versions of the chords’ labels for
every measure’s key. These two different methods will allow to better identify
non-diatonic chords, such as secondary dominants.

Sometimes, music21 identifies a chord which is missing its third. In this cases,
music21’s quality will not identify the chord as being major, minor, augmented
or diminished but as other. To deal with this issue, chords_parameters will
modify the corresponding chord labels so that they represent their respective
diatonic version.

Step 5
Calculate the surface parameters for all musical events.

Step 5 is performed by the parameter calculator. As input, it is fed with the list of

offsets, calculated in Step 2, and the piece’s key and its chords‘labels, calculated
in Step 4. As output, it produces the piece’s values of surface parameters, needed
to apply the rules in Lerdahl’s model of tonal tension. These parameters concern
the scale degree of the chords’ highest note, the chords’ inversions and the role
the chords’ notes play within the Tonal Pitch Space.

In AuToTen, the parameter calculator corresponds to parameters_finder from
functions.surface the previous chords_parameters. The former calculates
the surface parameters for every different version of the chords labels estimated
in Step 4. To do so, it uses muisc21 ‘s getScaleDegreeFromPitch, inversion
and pitches, as well as the surface parameters’ theoretical weightings defined in
Lerdahl’s model of tonal tension. The latter estimates the most appropriate chord
labels and their corresponding surface parameters. To do so, parameters_finder
compares the surface parameter that concerns the existence of non-harmonic
notes in each chord and estimates the final chord labels that will suit the least
non-harmonic musical discourse. Likewise, parameters_finder will correct any
offset-related mismatching. Note that two different systems have been used
to analyse the musical events in a given piece of music: IGA and music21. It
might be the case where the number of events found by these two systems is
not the same. AuToTen will be using the events calculated by IGA, as the
prolongational relations in the GTTM tree are defined according to these events.
So that, parameters_finder will compare IGA’s offsets with those of music21
and will assign the appropriate chord label and a set of surface parameters to
each of IGA’s offsets.

Step 6
Calculate the values of global tension and attraction of all musical events.

Finally, Step 6 is performed by the tension calculator. As input, it is fed with
the surface parameters, the chords’ labels and the GTTM matriz, calculated in
Steps 5, 4 and 3, respectively. As output, it produces the values of global tension
and attraction, according to Lerdahl’s model of tonal tension, of all musical
events in the input piece of music.

In AuToTen, the tension calculator corresponds to t_calculator from
functions.tension and a_calculator from functions.attraction. Both
functions need from the distance values between chords within TPS, which
is given by distance from functions.tps. According to Lerdahl’s model of
tension, this distance, d, is computed as d = i+j+k, where i represents the
distance between two chords in the chromatic circle-of-fifths, j represents the
distance between two chords in the diatonic circle-of-fifths and k represents the
difference between the representation of two chords within the Tonal Pitch space,
known as basic spaces. Thus, distance calls the functions i, j and k, all from
functions.variables.tps_components. To operate, these three functions
need the basic and chordal spaces of the two input chords. These spaces are
calculated through Space from functions.classes.space. The input chords,

in Roman numeral format, are translated into the alphabet key-signature format
in parser from functions.classes. Their notes are then calculated by the
functions.classes.notes. All the parameters needed for the calculations are
included in common from functions.parameters.

t_calculator calculates the flow of hierarchical tension of a given piece of
music. According to Lerdahl’s model, the final value of hierarchical tension
between two chords depends on the surface parameters, the TPS distance be-
tween chords and a collection of inherited distances that depends on the hi-
erarchical structure defined by the GTTM tree. These three contributions
are calculated using the functions dissonance and inherited, both from
functions.variables.tension_components, as well as distance. For these
functions to operate, they need the GTTM matriz and the chords labels,
which are processed using sequence.Harmony and matrix.Reduction both from
functions.classes.

a_calculator calculates the flow of harmonic attraction of a given piece of
music. According to Lerdahl’s model, the final value of harmonic attraction
between two chords depends on the TPS distance between them, the intervals
between their notes and their anchoring spaces, which are updated versions of
the chords’ basic spaces.

How was AuToTen evaluated?

One hundred test cases were manually annotated to test the validity of AuToTen’s
calculations. Likewise, a computational evaluation was carried out using four
pieces of music: Wagner’s Grail theme from Parsifal, Bach’s chorale “Christus,
der ist mein Leben”, and harmonic reductions of Chopin’s E major prelude and
the first phrase in Mozart’s sonata k.282. AuToTen’s outputs showed strong and
statistically significant correlations against all pieces, but that of Chopin’s, the
longest piece with many modulations, whose correlation was moderately strong.

The user can run the functions tests.distance_tests and tests.tension_tests
to see how AuToTen’s calculations agree with the ground-truths in all 100 cases.

The data used to produce the results of the test cases and the evaluation can be
found in /tests and /evaluation respectively.

Where to find more information about the theoretical con-
cepts upon which AuToTen is built?

o Generative Theory of Tonal Music: https://music.columbia.edu/publications/books/a-~
generative-theory-of-tonal-music

o Tonal Pitch Space: https://music.columbia.edu/publications/books/tonal-
pitch-space

 Lerdhal’s model of tonal tension: https://online.ucpress.edu/mp/article/24,/4/329/95267/Modeling-
Tonal-Tension

o Interactive GTTM Analyser: http://www.gttm.jp/
o music21: http://web.mit.edu/music21/

	AuToTen
	Introduction
	Software specifications
	How to use AuToTen?
	What else can be done with AuToTen?
	How does AuToTen work?
	AuToTen's implementation

	How was AuToTen evaluated?
	Where to find more information about the theoretical concepts upon which AuToTen is built?

