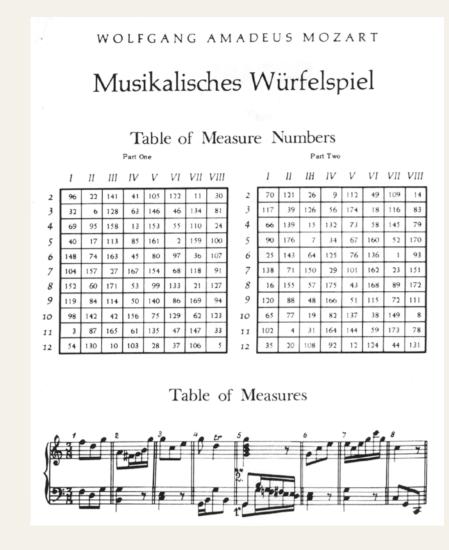
My computer writes music on its own ... does yours?


An investigation on the automatic generation of music and its application into video games

Germán Ruiz Marcos
The Open University

Introduction

What is Algorithmic Composition?

- ✓ computational process [1]
- ✓ music generation
- ✓ following a set of instructions [2]

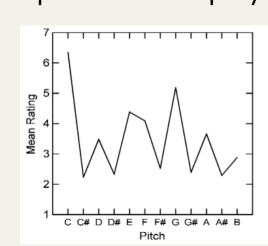
Why Compose Algorithmically?

- ✓ source of original material [3]
- ✓ inspiration [4]
- ✓ reduction of efforts and costs [5]

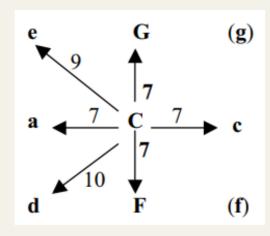
Where is Algorithmic Composition used?

- ✓ academia
- ✓ films and video games [6]

Which is the next step within Algorithmic Composition?

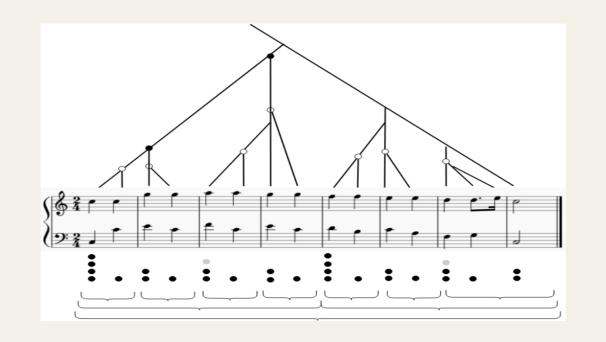

✓ refer to a specific feature

e.g. musical tension [7]


Theoretical Background

What is Tension in Music?

- ✓ notes and chords are organized in hierarchies
- ✓ the *more important* a note or chord, the more it is expected to be played

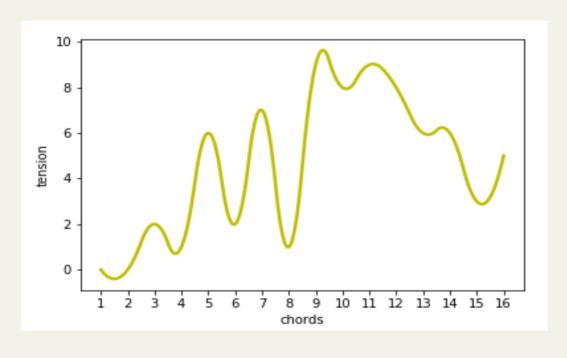


✓ tension relates to expectation [8]

Related Work

How to model Tension in Music?

✓ Harmonically


distance between chords [9]

✓ Melodically

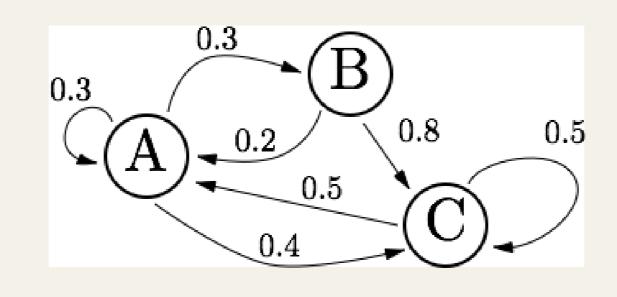
distance between melodic notes, their direction and role in the hierarchy [10]

✓ Rhythmically

duration of chords and speed of change when going from one chord to the next [11]

Methodology

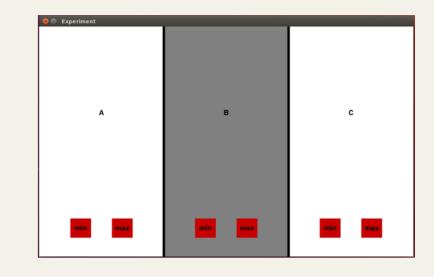
What is the Music Generator?


- ✓ computational interface
- ✓ real-time music generation
- ✓ matching a given tension level

How does the Music Generator work?

- ✓ quantitative tension values can be calculated for any possible sequence of notes or chords [9-13]
- ✓ tension values are transformed into probabilities according to how close they are to the input tension level.

e.g. the more important a chord, the more likely it is to be generated


✓ stochastic selection of chords and notes

Empirical Study

Does the Music Generator match people's perceptions?

- ✓ ten musicians and ten non-musicians
- ✓ three pieces were presented at a time

- ✓ participants selected which piece they perceived as being the most and the least tense
- ✓ the agreement between a participant's and the system's labelling was defined as equal to one if the system's tension label was the same as the participant's, zero otherwise.

	Min M	Med M	Max M	Average M	Min NM	Med NM	Max NM	Average NM
HARMONY	84 %	70 %	92 %	82 %	52 %	40 %	54 %	49 %
MELODY	42 %	40 %	92 %	58 %	46 %	50 %	76 %	57 %
вотн	68 %	64 %	94 %	75 %	60 %	58 %	78 %	65 %
AVERAGE	65 %	68 %	93 %		53 %	49 %	69 %	

Conclusion

- ✓ agreement (%) high correlation
- ✓ melodic and rhythmic mislabellings
- ✓ physiological data
- ✓ real-time generation
 - e.g. dynamic narratives

References

- 1. J. D. Fernández, and F. Vico, , "AI methods in algorithmic composition: A comprehensive survey", in Journal of Artificial Intelligence Research, 48, pp. 513–582, 2013.
- G. Nierhaus, G, "Algorithmic composition: paradigms of automated music generation", Springer Science Business Media, 2009.
- J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, "Search- based procedural content generation: A taxonomy and survey", in IEEE Transactions on Computational Intelligence and Al in Games, 3(3), pp. 172–186, 2011.
- 4. A. M. Smith, and M. Mateas, "Variations forever: Flexibly generating rulesets from a sculptable design space of mini-games", in Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games,pp. 273–280, August 2010.
- 5. C. Remo, "MIGS: Far Cry 2s Guay on the importance of procedural content", Gamasutra, November 2008.
- 6. K. Collins, K., "An introduction to procedural music in video games", in Contemporary Music Review, 28(1), pp. 5–15, 2009.
- 7. G. Papadopoulos, and G. Wiggins, "Al methods for algorithmic composition: A survey, a critical view and future prospects", in AISB Symposium on Musical Creativity, Vol. 124, pp. 110–117, April 1999.
- 8. R. Y. Granot, and Z. Eitan, "Musical tension and the interaction of dynamic auditory parameters", in Music Perception: An Interdisciplinary Journal, 28(3), pp. 219–246, 2011.
- 9. F. Lerdahl, and C. L. Krumhansl, "Modeling tonal tension", in Music Perception: An Interdisciplinary Journal, University of California Press Journals, 24(4), pp. 329–366, 2007.

 10. E. H. Margulis, "A model of melodic expectation", in Music Perception: An
- Interdisciplinary Journal, 22(4), pp. 663–714, 2005.

 J. P. Swain, "Dimensions of Harmonic Rhythm", in Music Theory Spectrum, University of
- California Press, 20(1), pp. 48–71, 1998.
- F. Lerdahl, and R. S. Jackendoff, "A generative theory of tonal music", MIT press, 1985.
 F. Lerdahl, "Tonal pitch space", Oxford University Press, 2004.

Contact Information

Germán Ruiz Marcos

german.ruiz-marcos@open.ac.uk +441908654825